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1 Introduction

In many economic settings, including trading and joint production, the surplus

to be shared is created through collaboration. Complementarity and substi-

tutability among agents determine how much a group of agents can share when

they cooperate. Consider, for instance, three musicians who can play together

as a duo or a trio for an event (but not as soloists). They will collect $900 for

performing as a trio. Should they instead perform as a smaller ensemble, they

would be paid less: Musicians 1 and 2 could collect $800, Musicians 1 and

3 could collect $600, and Musicians 2 and 3 could collect $400. If you could

decide, as a neutral outside party, how to split the $900 earnings of the trio

between them, what would you do?

Intuitively, the allocated reward for collaborating may be small if an agent’s

role in creating the surplus is limited. By contrast, an agent judged as playing

a more critical role might be rewarded more. The long economic literature

on other-regarding preferences has so far studied the notion of fairness from

a very different angle. It was not designed to address scenarios with such

complementarity and substitutability among agents,1 as subcoalitional worths

are not taken into account. If one were forced to apply this literature to

our problem, then choices for others would be independent of the worths of

subcoalitions (and in many cases, would be an equal split).

As its main takeaway, this paper provides robust evidence that coalition

worths do matter when choosing for others, and that principles from coop-

erative game theory have strong explanatory power in such situations.2 We

test axioms and compare competing solutions. At least in the context of the

problems studied here, we find that choices are well understood with a one-

parameter solution that finds its roots in cooperative game theory.

1See Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Andreoni and Miller (2002),
Charness and Rabin (2002), Karni and Safra (2002), and Fisman, Kariv and Markovits
(2007), among others. Discussions of this literature can be found, for instance, in the book
by Camerer (2003) and the survey by Sobel (2005).

2See Moulin (2003) for a textbook introduction to cooperative games from a normative
perspective, which is the perspective we adopt here.
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In our experiment, three subjects are randomly designated at the start of

each session as Recipients, while others are designated as Decision Makers. In

each of seven rounds, the Decision Makers are provided the set of coalition

worths for the three Recipients (a characteristic function, in the terminology

of cooperative game theory). These worths correspond to the value of dif-

ferent combinations of the Recipients’ ‘electronic baskets’, whose composition

is decided by the performance of each Recipient on an earlier quiz. Decision

Makers play the main role in our experiment, as only they provide our choice

data. For each characteristic function, we ask each of them to decide how to

split the worth of the grand coalition between the three Recipients. At the

end of a session, the Recipients are paid according to a randomly selected De-

cision Maker’s allocation for a randomly selected characteristic function. Our

experimental design ensures Decision Makers are ‘impartial observers’, in the

sense that their monetary payoffs are independent of their recommendation

(in contrast to dictator and ultimatum games). Moreover, the design elim-

inates strategic channels that might affect recommendations (in contrast to

ultimatum games, or settings where reciprocity is a concern).

Understanding people’s views when allocating money in such settings is

important, both for its own sake, as well as to shed light on the fair reference

point to use when assessing intentions and reciprocity in multiagent settings.

One could, for instance, think of Decision Makers as capturing arbitrators,

who are impartial observers with no immediate stakes in the decisions they

make. Our design eliminates strategic considerations to pinpoint fairness views

in their purest form, but our findings likely have important implications for

more complex settings with strategic considerations, where fairness ideals may

suggest focal equilibria or act as reference points. For instance, being offered

a reward that is considered unfair may make a musician resentful, inducing

her to either refuse joining the ensemble, or to exert relatively little effort if

she does join. These considerations are left for future work.

Many cooperative game-theory solutions have been proposed over the years.

A first question is whether or not their predictions are borne out in the data,

and in particular which of them is most successful at describing surplus-sharing
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decisions. But testing axioms, in addition to examining the explanatory power

and relative prevalence of some known solution concepts, offers a fuller pic-

ture of what people view as fair. Certain properties are satisfied by multiple

solution concepts, and may thus appear, at least on a theoretical level, to be

more universal and fundamental. Others are satisfied by a narrower class of

solutions, and capture the essence of what distinguishes these from others.

Nearly all our Decision Makers choose equal split for a characteristic func-

tion where all standard solution concepts agree that is the solution. Yet these

same Decision Makers often choose unequal splits in other, asymmetric char-

acteristic functions. Our data analysis, which discusses average, aggregate

and individual behavior, provides strong evidence in support of the axioms of

Symmetry, Desirability, Monotonicity, and Additivity. However, the Dummy

Player axiom, whereby a Recipient who adds no value to any coalition should

get a zero payoff, is clearly violated. We show that satisfying Symmetry and

Additivity (along with Efficiency, which must be satisfied in our experiment)

means Decision Makers’ choices are characterized by a linear combination of

the Equal Split solution and Shapley value, with weights summing to one.3

We use the data to estimate the resulting one-parameter, linear model–which

we refer to as the Equal-Split Shapley (ESS) model.

In the concluding section, we discuss two alternative treatments we de-

signed later to test further questions. In one variant, we eliminate the quiz

to test whether Decision Makers ignore coalitional worths that are randomly

assigned. As will be seen, the results are similar to our main treatment, which

may suggest that absent detailed information about the quiz, Decision Makers

considered baskets nearly randomly determined. Perhaps surprisingly, though,

the similarity shows Decision Makers take basket worths seriously even when

‘unearned.’ In another robustness treatment, we survey Decision Makers about

profit sharing among hypothetical musicians performing as a trio, similarly to

3This theoretical result holds for the set of 3-player characteristic functions studied here,
although Casajus and Huettner (2013)’s result tells us the result essentially extends to any
number of players and general characteristic functions, provided one adds a mild requirement
that null players receive a nonnegative amount when the grand coalition has a positive
amount to share. Alternate axiomatizations are given in van den Brink et al. (2013).
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the story in the first paragraph. That treatment establishes that our quali-

tative analysis is portable across situations, though quantitative estimates–a

single, easily identifiable parameter–may vary.

Further related literature

To our knowledge, this is the first paper to experimentally investigate peo-

ple’s views on monetary allocations in situations involving substitutability and

complementarity among recipients, and to empirically show that principles of

cooperative game theory can prove helpful for this purpose. Another novelty

of our approach is that, in addition to checking the relative prevalence of var-

ious solution concepts, we assess the empirical validity of various axioms. We

believe that testing axioms instead of testing specific functional forms could be

informative when it comes to better understanding other-regarding preferences

in other contexts as well.

There is a small experimental literature testing cooperative games from a

different perspective, allowing multiple subjects to bargain given a character-

istic function. Kalisch, Milnor, Nash and Nering (1954), one of the earliest

papers in experimental economics, informs subjects of their role in a char-

acteristic function and lets them interact informally. Others impose a for-

mal bargaining protocol, in addition to specifying a characteristic function,

to concentrate on a particular question of interest. For instance, Murnighan

and Roth (1977) consider the effect of messages during negotiation, and the

announcement of payoff decisions, on the resulting allocations; while Bolton,

Chatterjee, and McGinn (2003) study the impact of communication constraints

in a three-person bargaining game in characteristic-function form. Yan, Fried-

man and Munro (2016) study the validity of extreme core predictions when

using various market institutions to trade a single unit of an indivisible good.

Nash, Nagel, Ockenfels and Selten (2012) are interested in whether efficient

outcomes arise from a 40-times repeated bargaining game, with each stage

following their ‘agencies’ bargaining protocol; they study who is appointed to

split the pie (e.g., will it be the ‘strongest’ player in the characteristic func-
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tion?), and how the appointee’s split compares to some known solutions. On

balance, a fair allocation can potentially serve as a focal or reference point to

select among multiple equilibria in games. For complex strategic games, where

many conflicting aspects play a role in players’ decisions,4 the ‘fair’ benchmark

against which offers may be measured can be difficult to tease out.

One interpretation of the Shapley value is that it rewards people for their

role in creating the surplus, which Shapley measures by their marginal contri-

butions. Konow (2000) and Cappelen, Hole, Sørensen, and Tungodden (2007)

also touch upon the theme of rewarding contributions, but in a two-player

dictator game where the pie to split is the sum of the two subjects’ ‘contri-

butions’ in an earlier production phase. To understand how the dictator’s

choice depends on factors within versus beyond his control, a subject’s con-

tribution is the product of a chosen investment level and an exogenous rate

of return. Among other questions, Konow studies whether liberal egalitarian-

ism explains observed allocations when entitlement follows an accountability

principle. Cappelen et al. studies the relative prevalence of fairness ideals

beyond liberal egalitarianism, such as strict egalitarianism and libertarianism.

We study scenarios that differ on multiple dimensions. First, instead of being

specified as the sum of individual contributions, the amount to split arises

from complementarity and substitutability across agents. A main question is

then how Decision Makers assess individual contributions in such settings. Do

they use marginal contributions, as suggested by the Shapley value? Many

other measures are conceivable as well. Second, we provide no quantifiable

information to express coalition worths as a precise function of effort and luck

parameters. Besides keeping the analysis focused on our main point of interest

4Consider for instance Nash et al (2012)’s repeated game. Each stage starts with one
player out of three being selected by the ‘agencies’ protocol to allocate the coalition’s profit
(including to himself). Repeating this 40 times, choices can reflect negative reciprocity
(they show “the more aggressive the demand of one player is, the more aggressive are those
of the others”), reputation building, strategic experimentation (how much disparity others
tolerate), and end-game effects (will the last appointee take all?). They show splits vary
widely as a function of the appointee, who always either favors himself or splits equally
(thus departing from all cooperative solutions whenever the appointee is not the ‘strongest’
player). For each characteristic function, they quantify how much the average split over 40
rounds departs from different solutions using MSE.
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– whether and how Decision Makers reward people for their role in creating

the surplus – we see it as a realistic feature of some applications. For instance,

the musicians’ opportunities are quantifiable in terms of profit, but we would

not expect the musicians themselves, and a fortiori impartial observers, to

understand or agree on the differential impacts of talent and hard work in

generating them.

Decision Makers’ choices have no material consequences for themselves in

our experiment. This approach is borrowed from earlier experimental papers

studying fairness ideals in other contexts, where conflicting notions of fairness

might coexist; these include Konow (2000), Cappelen, Konow, Sorensen and

Tungodden (2013), and Cappelen, List, Samek and Tungodden (2020) among

others. This approach has also been used very recently to test paternalism in

the lab; see Ambuehl, Bernheim, and Ockenfels (2020).

2 Theoretical Benchmark

Let I be a set of n individuals. A coalition is any subset of I. Following von

Neumann and Morgenstern (1944), a characteristic function v associates to

each nonempty coalition S a worth v(S). The amount v(S) represents how

much members of S can share should they cooperate. That is, an allocation,

or payoff vector, x is feasible for S if
∑

i xi ≤ v(S). Assuming that the grand

coalition forms (that is, all players cooperate), how should v(I) be split among

individuals? A solution φ associates to each characteristic function v a set φ(v)

of payoff vectors that are feasible for N . When φ(v) is a singleton, φ(v) will

also denote the unique element of the set.

A significant part of cooperative game theory aims at defining normative

principles that a solution might satisfy, and understanding which combinations

characterize which solution concepts. We list some such principles in Section

2.1, and consider prominent solution concepts in Section 2.2. We use the

characteristic functions from our experimental design to illustrate the axioms

and solution concepts, thereby previewing their implications for choices in

our experiment. These characteristic functions (CFs) are defined for three
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individuals (recipients called R1, R2 and R3) and listed in Table 1 below. We

summarize the theoretical motivations for these CFs in Section 2.3.

{R1,R2} {R1,R3} {R2,R3} {R1, R2, R3}

CF1 60 0 0 60
CF2 40 40 0 40
CF3 40 40 20 50
CF4 80 60 40 90
CF5 30 15 15 30
CF6 40 40 0 70
CF7 40 40 40 60

Table 1: The seven characteristic functions (CF) studied in the experiment; the
worth of singleton coalitions is zero.

2.1 Normative Principles

Individual i is a dummy player if v(S) = v(S \ {i}), for any coalition S con-

taining i. The Dummy Player axiom stipulates that such individuals receive

a zero payoff. Formally, φ satisfies the axiom if xi = 0 whenever x ∈ φ(v) and

i is a dummy player in v. The Dummy Player axiom can be tested in CF1,

where R3 plays the dummy role. The worth of the grand coalition in CF1 is

the same as in the fully symmetric CF7, making it a direct test of whether

Decision Maker’s choices vary with subcoalitional worths.

Individual i is more desirable than j if for any non-singleton coalition con-

taining individual j but not i, replacing j with i strictly increases profit. If

replacing j with i never makes a difference, i and j are symmetric. A payoff

vector respects symmetry if it allocates the same amount to symmetric indi-

viduals. It respects desirability if it allocates a strictly larger amount to i than

to j when i is more desirable than j.5 Formally, φ satisfies the Desirability

(resp., Symmetry) axiom if, for all characteristic function v, each payoff vector

in φ(v) respects desirability (resp., symmetry).

5Comparisons of payoffs in terms of the individuals’ relative desirability were first sug-
gested by Maschler and Peleg (1966).
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CF 1 and 5 CF 2, 3 and 6 CF4 CF7

Rankings R1∼R2�R3 R1�R2∼R3 R1�R2�R3 R1∼R2∼R3

Table 2: The ranking of Recipients in each of the seven characteristic functions,
where Ri�Rj (Ri∼Rj) means that Ri is more desirable than (symmetric to) Rj.

In each of CF1-7, every pair of Recipients can be ranked in terms of either

symmetry or desirability. In particular, Ri is more desirable than (symmetric

to) Rj if and only if v({i, k}) > v({j, k}) (resp., v({i, k}) = v({j, k})). Table

2 shows the rankings of Recipients in CF1-7. Symmetry and Desirability have

implications within each characteristic function, with the exceptions of CF4,

where only Desirability applies (as it is fully asymmetric) and CF7, where only

Symmetry applies (as it is fully symmetric). Notice that R1 is always more

desirable than, or symmetric to, R2; and in turn, R2 is always more desirable

than, or symmetric to, R3. This is just for the purpose of normalizing CF1-7.

As will be discussed in Section 3, Decision Makers’ screens display random

permutations of the Recipients true identifiers (i = 1, 2, 3), so that they see a

permutations of each CF; hence they cannot detect the ranking above.

The axioms discussed so far apply pointwise: i.e., for given characteristic

functions. The next properties relate payoff vectors across characteristic func-

tions. Suppose that one selects a payoff vector x for a characteristic function

v, and a payoff vector x̂ for a characteristic function v̂. Suppose further that

the only difference between v and v̂ is that the worth of coalition S has in-

creased. Then the payoff vectors x and x̂ respect Monotonicity if the payoff of

each member of S increases, that is, x̂i > xi for all i ∈ S. Formally, φ satisfies

Monotonicity if x̂i > xi for all x̂ ∈ φ(v̂), x ∈ φ(v), and all i ∈ S whenever the

only difference between v and v̂ is that v̂(S) > v(S).

Monotonicity has multiple implications for CF1-7. First, in going from

CF2 to CF6, only the value of the grand coalition changes (it increases from

$40 to $70), and so the axiom says that every Recipient must receive more

in CF6 than in CF2. But the axiom can also be applied iteratively. For

instance, if one modifies CF3 to a new CF3’, by increasing v({1, 2, 3}) from
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$50 to $70, the axiom requires all payoffs to increase; and if one then modifies

CF3’ to CF6, by reducing v({2, 3}) from $20 to $0, then the payoffs of R2 and

R3 should decrease. Hence the axiom calls for an unambiguous increase for

Recipient 1 when moving from CF3 to CF6. Slightly more complex reasoning

shows R1’s payoff should increase in going from CF5 to CF2. Similarly, R3’s

payoff should increase going from CF1 to CF7. Lastly, the payoffs of R2 and

R3 should increase when moving from CF2 to CF3, and when moving from

CF2 to CF7.

The Additivity axiom is a cornerstone of Shapley (1953). Given two char-

acteristic functions v and v̂, the sum v+ v̂ is the characteristic function where

the worth of each coalition is the sum of its worth in v and in v̂. The so-

lution φ respects Additivity if ϕ(v + v̂) = ϕ(v) + ϕ(v̂) for all characteristic

functions v, v̂. In the case of a single-valued solution, for instance, if ϕ selects

the payoff vectors x for v and x̂ for v̂, then it selects x + x̂ for v + v̂. As is

well known, Additivity is equivalent to linearity with respect to rational coeffi-

cients: ϕ(αv+ βv̂) = αϕ(v) + βϕ(v̂), where α, β ∈ Q+. The case α = β = 1/2

will be useful for us, and is simple to prove; since ϕ(2v) = 2ϕ(v),

ϕ(
1

2
v +

1

2
v̂) = ϕ(

1

2
v) + ϕ(

1

2
v̂) =

1

2
ϕ(v) +

1

2
ϕ(v̂).

We have two ways of testing Additivity, even though no two of our charac-

teristic functions immediately add up to a third. First, under the reasonable

assumption that Decision Makers would choose an equal split in a hypothet-

ical characteristic function where only the grand coalition has positive worth

(equal to $30), the Additivity axiom can be examined using Decision Makers’

choices in both CF2 and CF6: for each Recipient, the amount allocated in

CF6 should be $10 larger than in CF2. Second, since CF3 is the average of

CF2 and CF7, for each Recipient the amount allocated in CF3 should be the

average of the amounts allocated to that Recipient in CF2 and CF7.
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2.2 Solution Concepts

The equal-split solution (ES) simply divides v(I) equally among all individuals,

for any v. By contrast, cooperative game theory provides a variety of solution

concepts that account for the worths of sub-coalitions, each capturing a distinct

notion of fairness. Prominent solution concepts are the Shapley value (Shapley,

1953), the core (Gillies, 1959), the nucleolus (Schmeidler, 1969), and the weak-

and strong-constrained egalitarian allocations (Dutta and Ray, 1989 and 1991).

We provide a quick primer for the reader below.

The Shapley value. Consider building up the grand coalition one person

at a time, giving each i his marginal contribution v(S∪{i})−v(S) to the set S

of individuals preceding him. The Shapley value (Sh), a single-valued solution,

achieves a notion of fairness by averaging these payoffs over all possible ways

to build up the grand coalition. That is,

Shi(v) =
∑

S⊆I\{i}

pi(S)[v(S ∪ {i})− v(S)],

where pi(S) = |S|!(n−|S|−1)!
n!

is the fraction of possible orderings in which the set

of individuals preceding i is exactly S.

The core. The core looks for payoffs x ∈ RI such that there is no coali-

tion whose members would be better off by cooperating on their own; that is,∑
i∈S xi ≥ v(S) for each coalition S, with

∑
i∈I xi = v(I) for the grand coali-

tion. While often interpreted from a positive standpoint, it also has normative

appeal, as it respects property rights for individuals and groups: picking pay-

offs outside the core means robbing some individuals from what they deserve.

The nucleolus. Like the Shapley value, the nucleolus (Nuc) prescribes a

unique solution in all cases. Given a payoff vector x, the excess surplus of a

coalition S is the amount it receives net of what it could obtain on its own,

that is,
∑

i∈S xi − v(S). The nucleolus interprets excess surplus as a welfare
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criterion for a coalition, and chooses among all feasible payoff vectors the one

that lexicographically maximizes all coalitions’ excess surpluses, starting from

the coalition with the lowest excess surplus and moving up. By contrast, the

core simply requires each coalition’s excess surplus to be nonnegative. Hence,

whenever the core is nonempty, it must contain the nucleolus.

Constrained egalitarian allocations. The constrained egalitarian allo-

cation combines egalitarianism with protection of individual interests. The

notion of egalitarianism is based on the Lorenz ordering, which is a partial

ordering over allocations such that x Lorenz-dominates y if, loosely speaking,

x can be derived from y through a sequence of transfers from ‘rich’ to ‘poor.’

The Lorenz core of the grand coalition is recursively defined. The Lorenz core

of a singleton coalition {i} is simply {v(i)}. The Lorenz core of a coalition

S is then the set of feasible allocations for S such that there does not exist

any y ∈ T ⊂ S such that y is Lorenz-undominated within T and the members

of T ‘all prefer’ y to x. The solution concept picks those allocations that are

Lorenz-undominated within the Lorenz core of the grand coalition. The idea

in this recursive definition is that objections must themselves be egalitarian.

The solution concept has two versions, Strong and Weak, which differ in what

‘all prefer’ means: in the Strong version (sCEA), all must be strictly better

off, while in the Weak version (wCEA), all must be weakly better off, with at

least one strict improvement. This seemingly small difference can yield very

different predictions. The sCEA may be multi-valued and is always nonempty;

but the wCEA, when it exists, selects a unique allocation.

Mixtures of Equal Split and the Shapley Value Our theoretical and

empirical analysis will lead us to consider the parametrized class of solutions

that are convex combinations of equal split and the Shapley value: ESSδ(v) =

δSh(v)+(1−δ)ES(v) where δ ≥ 0 is a fixed parameter representing how much

weight is placed on the Shapley value.

Table 3 reports what a Decision Maker who perfectly follows one of the

above solutions would select for CF1-CF6. For brevity, the table omits CF7, as

11



CF1 CF2 CF3 CF4 CF5 CF6

ES (20, 20, 20) ( 40
3 ,

40
3 ,

40
3 ) ( 50

3 ,
50
3 ,

50
3 ) (30, 30, 30) (10, 10, 10) ( 70

3 ,
70
3 ,

70
3 )

Sh (30, 30, 0) ( 80
3 ,

40
6 ,

40
6 ) ( 70

3 ,
40
3 ,

40
3 ) (40, 30, 20) ( 25

2 ,
25
2 , 5) (110

3 , 503 ,
50
3 )

Core P1 (40, 0, 0) (30, 10, 10) (50, 30, 10) (15, 15, 0) P2

Nuc (30, 30, 0) (40, 0, 0) (30, 10, 10) (50, 30, 10) (15, 15, 0) (40, 15, 15)

wCEA (30, 30, 0) - - (40, 40, 10) (15, 15, 0) ( 70
3 ,

70
3 ,

70
3 )

sCEA P3 (20, 10, 10) (20, 15, 15) (40, 25, 25) (15, 7.5, 7.5) ( 70
3 ,

70
3 ,

70
3 )

Table 3: What the solution concepts prescribe for CF1-CF6, where P1 =
{(x, 60 − x, 0) | x ∈ [0, 60]}, P2 = {(70 − x − y, x, y) | x, y ∈ [0, 30]}, and
P3 = {(30, 15, 15), (15, 30, 15)}. wCEA does not exist in CF2-CF3.

all solutions agree on splitting the $60 equally. It also omits the parametrized

solution ESSδ, which is easily derived by combining the first two rows.

Solution concepts and axioms are complementary: some solutions arose

from axioms (e.g., the Shapley value), while other solutions were motivated

differently (e.g., the constrained egalitarian solutions) and studied from an ax-

iomatic perspective only later. For each solution concept and each axiom from

Section 2.1, Table 4 summarize whether the solution concept always satisfies

that axiom (X) or whether it can violate it (7) for 3-person characteristic func-

tions.6 If such a violation cannot be observed over CF1-7, we notate that as

7∗ (e.g., wCEA is empty-valued for CF2-3, precluding a violation of additivity

here). See Online Appendix A for the underlying arguments.

6Table 4 considers only axioms studied in Section 2.1, and thus does not necessarily de-
scribe necessary and sufficient axioms for each solution concept. However, the classic result
of Shapley (1953) tells us that the Shapley value is the only single-valued solution satisfy-
ing the Dummy Player, Symmetry and Additivity axioms (under our running assumption
that solutions pick efficient splits of the grand-coalition worth). Other axiomatizations of
the Shapley value have been proposed over the years (see Winter (2002) for a survey). In
Observation 1 below, we note that dropping the Dummy Player axiom leads to a character-
ization of ESSδ for three-player characteristic functions as tested in this paper (see Casajus
and Huettner (2013) and van den Brink et al. (2013) for axiomatic results beyond three
players). Typical axiomatizations of the core and the nucleolus involve reduced-game prop-
erties, restricting how the solution varies as the set of individuals changes; see e.g. Peleg
(1986) and Potters (1991). Dutta (1990) also used such properties to characterize wCEA on
the class of convex games. The number of recipients is fixed in our experiment, and hence
testing reduced-game properties remains an open question.
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Axioms ES Sh Core Nu wCEA sCEA ESSδ

Dummy 7 X X X X 7 7

Desirability 7 X 7 7∗ 7 7 X
Symmetry X X 7 X X 7 X

Monotonicity 7 X 7 7 7∗ 7∗ X
Additivity X X 7 7 7∗ 7 X

Table 4: Solutions and Axioms for 3-Player CFs (δ ∈ (0, 1))

2.3 Motivations for CF1-7

CF1-7 allow us to assess the relative prevalence of solution concepts and di-

rectly test well-known axioms. Section 2.1 describes how chosen allocations

can be used to test the Dummy, Desirability, Symmetry, Monotonicity and Ad-

ditivity axioms. Table 3 shows the varied set of predictions for CF1-6 offered

by prominent solution concepts other than the equal split solution.

To ensure that subjects are not overwhelmed by numbers, we test only

characteristic functions for which the payoff of singleton coalitions is zero. We

introduce some variation in the worth of the grand coalition, but construct

CF1 and CF7 so that the grand coalition is worth $60 in both cases. CF1 thus

provides not only a test of the Dummy axiom, but a direct test of whether the

worths of subcoalitions matter through the contrast with CF7.

All prominent solution concepts from cooperative game theory prescribe

equal split for CF7. We thus use the selection of equal split in CF7 as a

screening device, focusing our analysis on what these subjects will do in other

characteristic functions where solutions can depart from equal split.

To make the contrast between the Shapley value and the core most mean-

ingful, we include some characteristic functions whose core is single-valued

(CF2-CF5). With three individuals and singleton coalitions that generate zero

profit, the core is single-valued if and only if v({1, 2})+v({1, 3})+v({2, 3}) =

2v({1, 2, 3}). Under this condition, the Shapley value is exactly halfway be-

tween the equal-split solution and the single payoff vector in the core (when

the core is single-valued, it also coincides with the nucleolus). We also include
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two characteristic functions with multi-valued cores (CF1, CF6).

3 Experimental Design and Procedure

We study how individuals (Decision Makers) allocate money to three other

participants (Recipients), in view of how much different coalitions of Recipients

would be worth. That is, Decision Makers’ information is in the form of a

characteristic function.

At the start of each session, three subjects are chosen through uniform

randomization and designated Recipients 1, 2 and 3, respectively. All other

subjects are designated Decision Makers. Subjects stay in the same role for

the entire session. Each session has seven rounds.

At the start of each round, each Recipient has an empty ‘electronic bas-

ket.’ By answering trivia questions correctly, a Recipient earns some fictitious

objects (e.g., two left shoes, a bicycle frame, one bicycle wheel) for his or her

basket. Combinations of objects that form a “match” have monetary value.

For instance, in a given round a complete pair of shoes – left and right – may

be worth $15, while a bicycle frame with two wheels may be worth $40. The

objects available to each Recipient in a round have been selected so that only

combinations of two or three Recipients’ baskets may have positive worth. The

worth of each basket combination corresponds to the maximum possible sum

of values that the objects inside generate. To continue the example above, if

combining two particular baskets leads only to a complete pair of shoes and a

complete bicycle, then that basket combination would be worth $55.

Before discussing our control over the values of possible basket combina-

tions, we discuss what the Decision Makers do with those values. Once baskets

are determined in each of the seven rounds, Decision Makers are told the val-

ues of the different basket combinations. As noted in Section 2, each Decision

Maker knows the Recipients are identified to him only through randomly gen-

erated aliases in each round, with the characteristic function shown to the

Decision Maker permuted accordingly.7

7That is, Recipients have a true fixed identity as R1, R2 or R3 but their names and
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The Decision Maker is permitted to allocate, as he or she deems fit, the

monetary proceeds of the three-basket combination among the Recipients; we

only require chosen monetary allocations to be nonnegative and efficient (no

money is left on the table). The Decision Maker receives $1 for each round

where he opts to make a decision, on top of the $5 show-up fee. Decision

Makers determine Recipients payoffs as follows. At the end of the session, one

round and one Decision Maker (who participated in that round) are randomly

chosen. Recipients receive the monetary payoffs determined by the chosen

Decision Maker in the chosen round, in addition to the $5 show-up fee. Sub-

jects are informed only of their own payoff, and do not learn which roles other

subjects played during the experiment.

Given our interest in testing specific axioms and solution concepts, we

opted to maintain some control over the set of characteristic functions faced

by Decision Makers. Subjects were told that Recipients would be earning

objects in each round by answering quiz questions correctly, but were not told

how those objects and their values were selected. For each round, we chose the

available objects and values of object combinations with the following goal in

mind: if Recipients were to earn all the objects available to them in a round,

then one of the seven characteristic functions in Table 1 would be generated.8

Precisely to reduce the probability that some other characteristic functions

would be generated, Recipients were afforded multiple opportunities to earn

available objects. In all our sessions, Recipients did indeed earn all available

objects, so that CF1-7 are the relevant characteristic functions to study.9

We ran six different sessions, using a Latin square design for CF1-6. This

allows us to test for potential effects from the order in which the characteristic

the characteristic function are permuted on the Decision Makers’ screens, with the aliases
independently redrawn in each round. This rules out the possibility a Decision Maker’s
payoff allocation for a Recipient is influenced by earlier choices for that Recipient.

8We explain below the session-dependent map from rounds to characteristic functions.
For testing other characteristic functions, the authors can provide an algorithm showing
how to generate any desired superadditive characteristic function (if all objects are earned),
by selecting object values and which objects are available for each Recipient to earn.

9Since the number of questions was fixed in advance, it was possible for Receivers to earn
fewer objects. In that case, in line with the above description, some other characteristic
functions would have been generated, based on which objects were earned and their values.
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functions are presented to Decision Makers, and if needed, help wash these out

in the aggregate.10 Online Appendix E details the session-dependent mapping

between rounds and characteristic functions. All standard solution concepts

agree on an equal split for CF7, and we leave it as a consistency check in the

final round of each session, where it cannot affect subsequent behavior.

3.1 Comments on the design

To keep our setting as close as possible to standard split-the-pie problems, our

design attempts to mitigate the possibility that information extraneous to the

monetary values of basket combinations affects Decision Makers’ choices. For

this reason, subjects remain in separate roles throughout the experiment, so

that Decision Makers cannot differentially consider their personal experience

as a Recipient when determining payoff allocations. Decision Makers cannot

communicate, and never learn others’ allocation decisions. Moreover, a Deci-

sion Maker’s chosen payoff allocation does not reflect strategic concerns, both

because it cannot influence his or her own payoff, and because Recipients have

no strategic role. Finally, Decision Makers are not given information about

Recipients’ performance in the quiz, or the mapping between performance and

basket values. The motivation for this choice, which bears some realism,11 is

twofold. First, attention remains focused on the characteristic function itself.

Second, even in a controlled laboratory setting, providing more information

could lead to less control: how difficult the Decision Maker finds the task, and

whether they find the skill it tests valuable, can confound their interpretation

of the results in idiosyncratic ways. The above features have the added benefit

of simplifying the Decision Maker’s problem from a computational standpoint.

The design also aims to provide a simple and economically relevant context

where substitutability and complementarity of individuals arise intuitively. We

subsequently tested alternative designs in robustness treatments, to vary how

10As seen in Online Appendix H, we do not find such order effects.
11It echoes aspects of real-life problems where endowments are taken as given but their

origin is unknown. For instance, it might not be known whether a valuable skill is innate
or acquired through hard work, whether a patented discovery was obtained after years of
research or through sheer luck, whether a piece of land was bought or inherited, etc.
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characteristic functions arise. Section 5 discusses these, showing that our qual-

itative analysis is portable, even if quantitative results may vary. The inclusion

of a quiz in the design aimed to create a sense of earned worths, because we

initially conjectured that subjects would ignore randomly-determined coalition

worths. As discussed later, one of the robustness treatments suggests that we

had limited success in creating a real sense of earning, and demonstrates that

coalitional worths are important even when unearned.

3.2 Procedure

The six sessions were conducted in April and May 2013, and held at a computer

lab at Brown University, with subjects participating anonymously through

their computer terminal. The interface for the experiment was programmed

by Possible Worlds Ltd. to run through a web browser. Subjects were recruited

via the BUSSEL (Brown University Social Science Experimental Laboratory)

website,12 and were allowed to participate in only one of the six sessions.

Sessions lasted about thirty to forty minutes. At the start of each session,

the supervisor read aloud the experimental instructions, which were also avail-

able on each subject’s computer screen. The onscreen instructions contained

a practice screen for inputting Recipients’ payoffs, to get accustomed to the

interface. The session supervisor then summarized the instructions using a

presentation projected onto a screen. The instructions and presentation are

available in Online Appendices C-D. Subjects learned their role as Recipient

or Decision Maker only after going through all of the instructions.

A total of 107 subjects participated in the experiment, for an average

of nearly eighteen subjects per session. With three subjects selected to be

Recipients in each session, a total of 89 subjects acted as Decision Makers.

12This site, available at bussel.brown.edu, offers an interface to register in the system
and sign up for economic experiments. To do so, the information requested from subjects
is their name and email address and, if applicable, their school and student ID number.
The vast majority of subjects registered through the site are Brown University and RISD
graduate and undergraduate students, but participation is open to all interested individuals
of at least 18 years of age without discrimination regarding gender, race, religious beliefs,
sexual orientation or any other personal characteristics.
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Nearly all Decision Makers chose to actively participate in each round.13 All

subjects received payment in cash at the end of the session.

After completing all seven rounds but before learning their payoff, subjects

in each session were presented with an optional exit survey via the computer

interface. This survey collected basic demographic information (major, gender,

age and number of siblings) and allowed subjects to describe how they made

their choices as Decision Makers, if applicable.

4 Data analysis

Figure 1 visualizes Decision Makers’ choices for CF1-7 with frequency-weighted

scatterplots in imputation triangles. Imputation triangles are commonly used

in the cooperative games literature, and are read as follows: R3’s payoff is

given by the vertical axis, R2’s payoff is read from the diagonal indifference

lines emanating from the horizontal axis, and R1’s payoff is what remains from

the total. Hence the top (bottom right, bottom left) corner of the simplex

corresponds to giving everything to R3 (R2, R1). For CF7, the only choice

consistent with standard solution concepts is to split proceeds equally among

the Recipients. Figure 1g shows that only 5 subjects who participated in CF7

chose an unequal allocation for that characteristic function. We drop these

subjects from our ensuing analysis.14

13In the first couple of sessions, after everyone except one or two Decision Makers had
completed all seven rounds, a connectivity issue with the server prevented the remaining
Decision Makers from entering their choice in the final one or two rounds. Of course, the
last round was always CF7. Since it was through no fault of their own, those few subjects
were paid $1 for each of those missing decisions. This did not affect any of the remaining
payment process. The connectivity problem was ultimately identified and corrected. Aside
from this, two Decision Makers voluntarily opted out of one round, and one opted out of
three rounds. Letting ni be the number of responses for CFi, we have n1 = 88, n2 = 89,
n3 = 88, n4 = 88, n5 = 86, n6 = 87, n7 = 84.

14These 5 subjects were also outliers in other characteristic functions. Some of their survey
responses suggest a lack of understanding of basket worths or of the setting, or that they
were intentionally allocating payoffs in an arbitrary manner; e.g., in describing how they
made their choices in the exit survey, one of these five outliers wrote “Pretty arbitrary”,
and another explained that “i gave one person all of the money because i thought it would
increase the recipients average earnings” (sic).

18



0
10

20
30

40
50

60

0 10 20 30 40 50 60

Core

ES

Sh, wCEA, Core, Nuc

sCEA

Core

(a) Characteristic function 1

0
5

10
15

20
25

30
35

40

0 5 10 15 20 25 30 35 40

ES
Sh

sCEA

Core, Nuc

(b) Characteristic function 2

0
5

10
15

20
25

30
35

40
45

50

0 5 10 15 20 25 30 35 40 45 50

ES

Core, Nuc

sCEA

Sh

(c) Characteristic function 3

0
10

20
30

40
50

60
70

80
90

0 10 20 30 40 50 60 70 80 90

Core, Nuc

sCEA

Sh

ES

wCEA

(d) Characteristic function 4

0
5

10
15

20
25

30

0 5 10 15 20 25 30

ES

sCEA

Core, Nuc, wCEA
Sh

(e) Characteristic function 5

0
10

20
30

40
50

60
70

0 10 20 30 40 50 60 70

Core

ES, sCEASh

Nuc

(f) Characteristic function 6

0
10

20
30

40
50

60

0 10 20 30 40 50 60

ES, Sh, wCEA, sCEA, Core, Nuc

(g) Characteristic function 7

Figure 1: Frequency-weighted
scatterplots of Decision Makers’ al-
locations (with outliers). Vertical
ticks give R3’s payoff; R2’s payoff
is read through the diagonal indif-
ference curves; R1’s payoff is what
remains. Each ball’s radius is pro-
portional to the fraction of Decision
Makers who picked its center.
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CF1 CF2 CF3 CF4 CF5 CF6 CF7

Recipient 1 $24.30
(0.73)

$17.70
(0.73)

$19.07
(0.52)

$34.02
(0.70)

$10.51
(0.23)

$27.71
(0.70)

$20
(0)

Recipient 2 $24.36
(0.75)

$11.42
(0.51)

$15.22
(0.33)

$29.04
(0.52)

$11.09
(0.26)

$21.57
(0.57)

$20
(0)

Recipient 3 $11.34
(1.05)

$10.88
(0.45)

$15.70
(0.47)

$26.94
(0.54)

$8.41
(0.33)

$20.72
(0.53)

$20
(0)

% Equal splits 41% 23.8% 18.1% 57.8% 65.4% 20.7% 100%

Observations 83 84 83 83 81 82 79

Table 5: Summary data. Average amounts allocated (standard errors in paren-
theses), along with percent of payoff allocations that are “equal splits” as defined
by choosing payoffs for Recipients that differ by at most one dollar.

Since the imputation triangles are all the same size (only tick marks differ),

they are comparable in terms of percentages of the total allocated to each

recipient. The movement of the clouds of points across characteristic functions

suggests that splits do vary with sub-coalition worths. CF1 and CF7 provide

a particularly salient contrast, as they share the same total amount available

but differ in the sub-coalition worths.

Table 5 summarizes the data more succinctly. The first three rows give

the mean payoffs chosen by Decision Makers for each characteristic function.

We see a clear departure from the equal split norm. For instance, the mean

payoffs in CF1 and CF7 differ widely, although the available sum is $60 in

both cases.

Table 5 also reveals a substantial fraction of subjects depart from equal

split in CF1-6. In CF2, CF3 and CF6, the worth of the grand coalition is not

divisible by three. Decision Makers can input numbers with decimal places,

but may find payments in whole dollars simpler. Throughout, we count an

allocation as an equal split if the payoffs of Ri and Rj differ by at most one

dollar, for all i, j. When the total worth is divisible by three (CF1, CF4, CF5

and CF7), everyone who satisfies our equal-split criterion splits exactly equally.

There are 28 Decision Makers who split the money exactly equally in all four

CFs where the total is divisible by three. Even allowing for differences of a

dollar, the proportion of equal splits is lower in CF2, CF3 and CF6, where the

total is not perfectly divisible. Imperfect divisibility might motivate Decision
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Makers to think further about the problem, and take a closer look at sub-

coalition worths. Alternatively, there may be a fraction of Decision Makers

who desire an “equal split,” but round in multiples of $5 instead and don’t

discriminate regarding who get more. If one includes payoff allocations that

differ by (at most) $5, the percentages for CF2, CF3, and CF6 would be

closer to the others in Table 5. But this may count too many people: in CF3,

for instance, among Decision Makers satisfying the $5-criterion but not the

$1-criterion, 73.7% choose the allocation ($20, $15, $15), which is compatible

with rewarding the most desirable recipient R1, and treating the symmetric

recipients R2 and R3 equally. That choice happens to be the sCEA in CF3,

and is also exactly midway between equal split and the Shapley value.

The imputation triangles in Figure 1 mark the prediction(s) of the solution

concepts from Section 2.2, and can be used to gauge how close choices are

to those predictions within a single CF. To get a better sense of how close

choices are to a solution concept when taking into account all CFs, one could

attempt to classify each subjects’ array of choices, based on the smallest mean-

squared error, into either the nucleolus, the sCEA, equal split, the Shapley

value, or a simple average of the Shapley value and equal split solution (to be

parsimonious, as a continuum of weights are possible). For the 79 subjects who

provided answers to all of CF1-6, we find that 3.8% of subjects are closest to

the nucleolus, 3.8% are closest to sCEA, 43.0% are closest to equal split, 16.5%

are closest to the Shapley value, and 32.9% are closest to a simple average of

the Shapley value and equal split solution. The data, can, however, teach us

more. Our ensuing analysis provides evidence that subjects’ choices are not

arbitrary, but are guided by basic normative principles.

4.1 Axioms

In this subsection, we provide the empirical support for the following result.

Result 1. Overall, there is strong evidence for Additivity, Desirability, Mono-

tonicity, and Symmetry. On the other hand, Dummy Player is rejected.
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Dummy player. According to the Dummy Player axiom, R3 should receive

zero payoff in CF1. By contrast, Table 5 shows that R3 receives an average

payoff of $11.34, which is significantly different from zero at all conventional

significance levels (p = 0.0000). When excluding equal splits, the average

payoff of R3 is $5.33, which is still significantly different from zero at all

conventional significance levels (p = 0.0000). At the individual level, 34.9% of

subjects satisfy the axiom, while nearly two-thirds of subjects violate it, such

as by choosing equal split (41%) or a different convex combination of the equal

split solution and the Shapley value (15.7%). Most in the latter category give

$10 to R3, and $25 to each of the other recipients. There are several reasons

why one may see few norms in CF1; for instance, the Shapley value is an

element of the core, and coincides with the nucleolus.

Desirability. Remember that R1 � R3 and R2 � R3 in CF1 and CF5;

R1 � R2 and R1 � R3 in CF2, CF3 and CF6; and R1 � R2 and R2 � R3

in CF4. Desirability requires the payoff difference between a more desirable

and less desirable Recipient to be strictly positive. Assessing desirability is

nontrivial, and Decision Makers could not rely on any patterns due to our use

of randomly generated aliases for recipients. Equal splits automatically violate

desirability, and we stack the deck against the axiom in our statistical analysis

by including these in the sample.

Nonetheless, Table 5 shows that average payoff allocations respect all de-

sirability comparisons, with more desirable Recipients allocated strictly higher

average payoffs. As a first check, a paired-sample Hotelling’s T-square test (a

multivariate generalization of the paired t-test) rejects the joint null hypoth-

esis that the twelve payoff differences are all zero (p = 0.0000), showing that

Decision Makers do not treat all Recipients equally. We then examine each

desirability ranking to see which are respected. For each CF and desirability

comparison Ri � Rj, a paired t-test rejects the null hypothesis that the aver-

age payoff difference is zero, with p ≤ 0.0006 in all cases except for equality

of R2 and R3 in CF4 (p = 0.0109). Effect sizes as measured by Cohen’s d
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(Cohen, 1998) range from moderate to large, with only two exceptions.15

We then delve into potential heterogeneity in choices. The Wilcoxon

signed-ranks test for distributions (which applies to dependent samples, as

we have here) rejects each null hypothesis that the payoff distributions for

desirability-ranked Recipients are the same (p = 0.0000 in all cases except for

equality of R2 and R3 in CF4, where p = 0.0371). Figure 6 in the Online

Appendix plots the empirical CDFs of monetary differences chosen by each

Decision Maker for different Recipient pairs and CFs. These show the support

of the distribution is almost entirely positive when desirability applies. Of

course, individual noise on a given desirability ranking may be canceled in the

aggregate, and Figure 7 in the Online Appendix indeed shows that the CDF of

money to Ri generally first-order stochastically dominates that for Rj, when

Ri � Rj. See Figure 2 in the text for an example of each plot in the case of

CF6, where R1�R2,R3.

The imputation triangles in Figure 1 provide a view of Desirability at the

individual level. In our setting, the axiom implies that chosen allocations lie

strictly below the vertical axis passing through equal split (R1 and R2 get at

least as much as R3, with at least one strict comparison) and lie to the left of

the diagonal line passing through equal split (strictly to the left if R1 is more

desirable than R2). Figure 1 provides overall support for this placement of

allocations. Among nonequal splits, the percentage of individuals satisfying

all desirability comparisons is 85.7% for CF1, 56.3% for CF2, 63.2% for CF3,

31.4% for CF4, 67.9% for CF5, and 55.4% for CF6. CF4 is more complex

because no two players are symmetric. Still, 94.3% of subjects in CF4 respect

at least two of the rankings R1 � R2, R2 � R3, and R1 � R3 (those respecting

the first two inequalities satisfy the third), and Figure 7 of the Online Appendix

shows that violations are canceled out in the aggregate.

15This is the absolute value of the mean difference in payoffs divided by the standard
deviation of this difference. A value of 0.2 is considered small, 0.5 is moderate, and 0.8 is
large (Cohen, 1998). Except for an effect size of 0.2860 for R2 versus R3 in CF4, and 0.3930
for R1 versus R3 in CF3, all other effect sizes are in the interval [0.4637, 0.8637].
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Figure 2: A view of desirability and symmetry in CF6, where R1�R2∼R3.

Symmetry. Remember that R1 ∼ R2 in CF1 and CF5, and R2 ∼ R3 in

CF2, CF3 and CF6. Symmetry requires symmetric Recipients to receive equal

payoffs. Average payoff allocations in Table 5 appear to respect the axiom,

with ‘similar’ average payoffs for symmetric Recipients. However, equal splits

trivially satisfy symmetry and we exclude these when performing tests below.

For each CF, a paired t-test cannot reject the null hypothesis of zero payoff

difference between symmetric recipients (p = 0.1167 for CF5, with p ranging

from 0.3005 to 0.9544 otherwise).16 All but one of the observed effect sizes

are very small, with a small-to-moderate effect size for CF5: d = 0.0082 for

CF1, d = 0.1068 for CF2, d = 0.0964 for CF3, d = 0.3063 for CF5, and

d = 0.1295 for CF6. Taking into account the observed standard deviations

and the number of observations left after dropping equal splits,17 our minimum

detectable effect sizes with 80% power are ds = 0.4085 for CF1, ds = 0.3557

for CF2, ds = 0.3447 for CF3, ds = 0.5492 for CF5, and ds = 0.3528 for CF6.18

16One can also use the paired-sample Hotelling T-square test to check the joint null
hypothesis that all 5 payoff differences between symmetric recipients are zero, conditional
on nonequal splits in all these CFs, rather than each CF separately; again we cannot reject
the null (p = 0.3466).

17After dropping equal splits in a CF, we remain with n = 49 for CF1, n = 64 for CF2,
n = 68 for CF3, n = 28 for CF5, and n = 65 for CF6.

18When equivalence is the hypothesis of interest, an alternative to effect sizes is
Schuirmann (1987)’s two one-sided tests. This approach is commonly used in the bio-
statistics literature (e.g., to test whether a cheap new drug is as effective as an existing one)
and also pointed out by List, Sadoff and Wagner (2011). After choosing some acceptable
upper and lower bounds ∆U and −∆L (often symmetric), two composite null hypotheses
about the difference in means, ∆, are tested: ∆ ≤ −∆L and ∆ ≥ ∆U . Equivalence is
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Taking into account heterogeneity in choices, we cannot reject equality

of the distribution of payoffs to symmetric recipients in any CF, using the

Wilcoxon signed-ranks test (p = 0.1956 for CF5, with p-values ranging from

0.4894 to 0.7673 otherwise). To get a sense of monetary differences in a Deci-

sion Maker’s choices for symmetric Recipients among nonequal splits, we again

refer the reader to Figure 6 in the Online Appendix. This shows the CDFs

of differences between symmetric Recipients tend to be symmetric around a

mode of zero. Again, noise may be canceled in the aggregate, and Figure 7 in

the Online Appendix shows that the CDFs of money allocated to symmetric

Recipients are quite similar. See Figure 2 in the text for an example of each

plot in the case of CF6, where R2∼R3.

In the imputation triangles, symmetry implies that chosen allocations should

lie on the vertical bisector of the triangle for CF1 and CF5, and on the diag-

onal bisector emanating from the left for CF2, CF3 and CF6. Figure 1 again

provides support for this placement of allocations. Among nonequal splits,

the percentage of individuals satisfying symmetry is 81.6% for CF1, 57.8% for

CF2, 67.6% for CF3, 57.1% for CF5, and 56.9% for CF6.

Additivity. Additivity has two implications for Recipients’ payoffs: (1st)

payoffs in CF6 should be exactly $10 higher than in CF2, and (2nd) payoffs in

CF3 should be the average of payoffs in CF2 and CF7. Letting mRi(k) denote

Ri’s payoff in characteristic function k, we say mRi(6) − (mRi(2) + 10) is the

deviation from the 1st additivity implication for Recipient i, and mRi(3) −
0.5(mRi(2) + mRi(7)) is the deviation from the 2nd additivity implication for

Recipient i. Those choosing equal splits in both CF2 and CF6, or both CF2

and CF3, trivially have zero deviation in the corresponding additivity impli-

declared when both one-sided tests are rejected. Fixing a type-I error rate of α, the out-
come is equivalent to declaring equivalence when the (1− 2α)% confidence interval for the
difference in means is contained in the acceptable interval [−∆L,∆U ]. Hence the (1− 2α)%
confidence interval for the difference is the smallest interval [−∆L,∆U ] where equivalence
can be declared. With α = 0.05, the 90% confidence intervals for the monetary difference
between symmetric recipients, conditional on a nonequal split, are [-$3.08,$2.88] for CF1,
[$-0.66, $2.03] for CF2, [$-1.89,$0.67] for CF3, [$-3.44,$0.09] for CF5 and [$-0.67,$2.90] for
CF6.
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Figure 3: Empirical CDFs of additivity deviations for R1 on the left, and CDFs
of payoffs for each side of the additivity equations for R1 on right.

cation, so we exclude these from our statistical tests.

Average payoffs appear to satisfy the additivity implications even after

dropping such equal splits, with the largest average deviation around fifty

cents. For each Recipient and additivity implication, a paired t-test cannot re-

ject the null that the average deviation is zero (p-values ranging from 0.3482 to

0.9930).19 The effect sizes we find are all very small (d = 0.0011/0.0336/0.0345

for R1/R2/R3 in the 1st additivity implication, and d = 0.0291/0.1181/0.0648

for R1/R2/R3 in the 2nd). Taking into account the observed standard devia-

tions and the number of observations remaining in the sample,20 our minimum

detectable effect sizes with 80% power are d = 0.3501 for each Recipient in the

1st implication, and d = 0.3557 for each Recipient in the 2nd implication.21

We next consider distributions of choices. Even among only those De-

cision Makers who choose an unequal split in at least one of CF2 or CF6,

the Wilcoxon signed-ranks test cannot reject for any i = 1, 2, 3 the null hy-

19One can also examine the joint null hypothesis that all deviations are zero using the
paired-sample Hotelling T-square test, conditional on unequal splits in at least two of CF2,
CF3 and CF6 (so neither implication holds trivially). This too cannot reject the null (p =
0.7838).

20We have n = 66 for the 1st additivity implication and n = 64 for the 2nd implication.
21When the null is the hypothesis of interest we can also use Schuirmann (1987)’s two one-

sided tests, as in Footnote 18. With α = 0.05, the 90% confidence intervals for the deviation
give the smallest bounds where equivalence may be declared. For the 1st implication, these
are [-$1.42,$1.44] for R1, [$-1.20, $1.67] for R2, and [$-1.68,$1.20] for R3; for the 2nd, these
are [$-1.11,$1.47] for R1, [$-1.40, $0.39] for R2, and [$-0.73,$1.39] for R3.
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pothesis that mRi(6) and mRi(2) + 10 come from the same distribution; and

similarly, it cannot reject for any i = 1, 2, 3 the null hypothesis that mRi(3)

and 0.5(mRi(2) +mRi(7)) come from the same distribution, among those who

choose an unequal split in at least one of CF2 or CF3. The p-values for these

tests range from 0.2297 to 0.9080. For these subjects, Figure 8 in the Online

Appendix visualizes the empirical CDFs of both the deviations and payoffs for

each additivity implication; see Figure 3 in the text for examples of these plots

for R1. We see some heterogeneity or noise in terms of the deviations, though

there are 17 (7) subjects who satisfy the 1st (respectively, the 2nd) implication

with exact equality for all recipients. These deviations mostly wash out in the

aggregate, as we see that the empirical CDF of mRi(6) is similar to that of

mRi(2)+10, and the CDF of mRi(3) is similar to that of 0.5(mRi(2)+mRi(7)).

Monotonicity. The monotonicity axiom has multiple implications here:

mRi(6)−mRi(2) > 0 for i = 1, 2, 3; mRi(3)−mRi(2) > 0 and mRi(7)−mRi(2) >

0 for i = 2, 3; mR1(6) − mR1(3) > 0 and mR1(2) − mR1(5) > 0; and finally

mR3(7) − mR3(1) > 0. Average payoffs do satisfy these restrictions. The

equal split solution happens to satisfy all these instances of monotonicity ex-

cept for the last one (R3 gets $20 in both cases). Even including those who

split equally in CF1, and excluding those who split equally in CF2 and either

CF3 or CF6 (so that none of the ten implications can be trivially satisfied),

we can reject the joint null hypothesis that the payoff differences are all zero

using the paired-sample Hotelling T-square test (p = 0.0000). Delving into

the ten implications separately using paired t-tests to see which differences

are nonzero, we reject every null (p = 0.0000 in all cases). Seven out of the

ten effect sizes are larger than 1, with the smallest effect size being 0.6381.

Taking a closer look at individual behavior, Figure 9 in the Online Appendix

shows that the empirical CDFs of the above payoff differences are very heavily

skewed towards positive numbers. Unsurprisingly then, for each combination

Ri, CFj and CFk where monotonicity applies, the Wilcoxon signed-ranks test

rejects at all standard significance levels the null hypothesis that mRi(j) and

mRi(k) come from the same distribution.
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4.2 Emerging solution concept

The classic characterization of the Shapley value is based on Additivity, Ef-

ficiency, Symmetry, and Dummy Player (Shapley, 1953). Having to allocate

all the money means Efficiency is automatically satisfied here. In view of

Result 1, it is natural to ask which class of solution concepts emerges if we

drop the Dummy Player axiom from Shapley’s characterization. A clean char-

acterization emerges for the domain V of three-player characteristic functions

where the worth of each coalition is a rational number, and singleton coalitions

are worth nothing (naturally, V contains CF1-7). The proof of the following

observation is straightforward, and appears in Online Appendix B.

Observation 1. A single-valued solution concept σ : V → R3 is Additive,

Symmetric, and Efficient if and only if σ is a linear combination of the Shapley

value and the equal split solution, that is, σ = δSh+ (1− δ)ES. Moreover, δ

is positive if and only if σ satisfies either Monotonicity or Desirability.

Thus the data singles out a simple, one-parameter solution concept. Under

this model, payoffs are determined by a fixed affine combination of equal split

and the Shapley value, with δ independent of Recipients and characteristic

functions. We will call this the Equal-Split Shapley (ESS) model. Recipients

start on equal footing, and then gain (lose) δ dollars for each dollar by which

the Shapley value is larger (smaller) than equal split: δ = σi(v)−ESi(v)
Shi(v)−ESi(v)

, for any

characteristic function v and any Recipient i such that Shi(v) 6= ESi(v).

The tests of axioms performed earlier check whether the data is consistent

with particular instances of these axioms, as they apply to the characteris-

tic functions studied here. On the other hand, the ESS model relies on the

axioms being satisfied universally by choices, which is not directly testable.

For this purpose, we fit the model to the data and see that it provides a nice

match. To estimate δ, it is useful to avoid a regression in levels (so CFs with

larger monetary amounts do not unduly influence our estimates) by using an

equivalent rephrasing the model in terms of percentage departure from equal
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(all) (no D-equal splitters) (D-equal splitters)
m−ES
ES

m−ES
ES

m−ES
ES

Sh−ES
ES 0.368∗∗∗

(0.039)
0.521∗∗∗
(0.044)

0.065∗
(0.028)

constant −0.005
(0.005)

−0.012
(0.007)

0.008∗
(0.003)

No. subjects 84 56 28
Observations 1150 766 384

R2 0.3003 0.4297 0.0450
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 6: Regressions of the percentage departure from equal split of allocations to R1
and R3, against percentage departure of the Shapley value from equal split. Huber-White
heteroscedasticity-robust standard errors in parentheses, clustered by Decision Maker.

split:
σi(v)− ESi(v)

ESi(v)
= δ

(
Shi(v)− ESi(v)

ESi(v)

)
,

for any Recipient i and any characteristic function v.22 Because the ESS model

applies the same δ to all recipients, we can pool data across them to estimate

δ. Since the payoff of a Recipient can be inferred from the payoffs of the other

two (the sum of all three payoffs is fixed per characteristic function), we only

consider choices for R1 and R3 per characteristic function (we drop R2 since

their Shapley value coincides with equal split in CF4, leading to less exploitable

variation). We use a generalization of the Huber-White sandwich estimator of

errors that is not only robust to heteroscedasticity, but also clustered at the

level of the Decision Maker to permit for correlation across his or her choices

(Rogers, 1993). The first column in Table 14 provides the estimation results

among all Decision Makers, with the weight on the Shapley value δ = 0.368

significantly different from zero.

For each CF, we know there is a fraction of Decision Makers who split

equally. We can define a Decision Maker as an equal splitter if she picks equal

split in every CF. By definition, the δ of these individuals under the ESS model

will be near zero. We can also single out a larger class of Decision Makers: say a

subject is a D-equal splitter if she splits exactly equally in all four characteristic

22This is also equivalent to normalizing by the total v({1, 2, 3}) available; that would be
interpreted as the departure from equal split as a percent of the pie.
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functions where the total worth is divisible by three. Through their choices,

D-equal splitters reveal themselves as having a strong tendency towards equal

splits. We find 10 equal splitters and 28 D-equal splitters, with the former

set nested in the latter: they split exactly equally, not just within $1, in CF1,

CF4, CF5 and CF7. Some of these subjects may round payments by multiples

of $5 instead of $1 when the worth of the grand coalition is not divisible by

three, but others may choose with subcoalitional worths in mind. The third

column in Table 14 shows the estimated δ among D-equal splitters is small

but different from zero at the 5% level. A few of these subjects seem to follow

a more intricate model of choice than ESS: they sometimes select reasonable

payoff allocations that are far from equal splits when the worth of the grand

coalition is not divisible by three.23 We find it interesting to document these

behaviors, though they are unusual and have limited impact on our analysis.

Given that D-equal splitters comprise a sizable fraction of subjects with δ

near zero, it must be that other Decision Makers use a larger δ than appears in

the first column of Table 14. Indeed, the estimate of δ among those subjects is

close to one-half, suggesting that they are well-described by a simple average

of equal split and the Shapley value.

Given the heterogeneity uncovered above, one may be interested in aggre-

gating opinions to determine what the society as a whole views as an appro-

priate allocation in each CF.24 The simple average is perhaps the most natural

means of aggregation: Rubinstein and Fishburn (1986) show it is the only ag-

gregator that picks the common opinion when all Decision Makers agree, that

23One such D-equal splitter is within $5 in all other characteristic functions, with one
exception: they choose ($40, $0, $0) in CF2, following the nucleolus in respecting the extreme
competition between R2 and R3 for cooperation with R1.

24In Online Appendix H we consider some possible sources (or correlates) of heterogeneity
in δ: interaction effects with a Decision Maker’s major, age, gender, and number of siblings,
or session effects (e.g., arising from the ordering of characteristic functions in the Latin
square design). We find that a Decision Maker’s gender has no statistically significant
impact on δ; nor does their number of siblings. Being an economics-related major may
have some impact: an increase in δ of about 0.2, significant only at the 5% level. Further
interaction with age reveals that the effect is significant only for subjects who are at least
20 years old, and presumably more advanced in their studies. We thus suspect that the
effect has more to do with coursework in economics than personal traits, but cannot draw
any definitive conclusions using the sparse education data we collected.
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is efficient, and for which a Recipient’s payoff depends only on the amounts

Decision Makers’ allocated to him. The ESS model remains useful in this

case. Indeed, if each Decision Maker j (noisily) follows the ESS model, then

the average allocation also follows the ESS model, with the societal δ given by

the average of individual δj’s.
25 The close adherence of average payoffs to the

axioms provides further support for an ESS model of societal opinion.

5 Concluding Remarks

We conclude by examining whether the qualitative assessment of the axioms,

and the usefulness of the ESS model, remain valid in other contexts. Pay-

off allocations, and thus parameter estimates, could plausibly vary with the

context in which the characteristic functions arose. As an analogy, expected

utility theory can be helpful to explain choices in various contexts of choice

under risk, though risk attitude may be context-dependent.26 In his survey of

positive analyses of distributive justice, Konow (2003) argues that justice is

“context dependent, but not context specific.” General principles hold widely

(qualitative results in our context), while “context is the indispensable element

that supplies the people, variables, time framework and weighting of principles

that result in justice preferences” (parameter estimates in our context). For

the ESS model, all that is needed for accurate predictions in a given context

is to test choices in just a few–or even as little as one–characteristic functions,

within that same context, to assess the weight on the Shapley value.

These considerations lead to some interesting questions. First, if coalitional

worths were determined randomly instead of through a quiz, would Decision

Makers simply split the pie equally, or would they still take coalition worths

into account? Though we had conjectured the former, there are arguments for

the latter. For instance, one may want to more greatly reward a band member

who plays an important role in drawing audiences, even if that ability is mostly

25We note averaging is purely an ex-post exercise: recipients were not paid according to
such averages, nor were they mentioned to subjects.

26See Barseghyan, Prince and Teitelbaum (2011) and Einav, Finkelstein, Pascu and Cullen
(2012).
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attributable to luck (e.g. appearance, innate vocal talent). Decision Makers

may also select what they think would be the likely outcome if Recipients were

to bargain. In that case, coalitional worths represent outside options and their

origins are irrelevant. Second, given that Decision Makers are not informed of

Recipients’ quiz performance, prizes and their worths, did our design create a

sense of earned worths that impacted Decision Makers’ choices? Third, does

luck versus desert play a role in our allocation problems (as it does in other

settings, see e.g. discussion in Section 4 of Konow (2003))? We subsequently

created another two related designs to shed light on these questions. The data

analysis supporting the discussion below is available in Online Appendix G.

The ‘No-Quiz’ treatment differs from our original experiment – from now on

called the ‘Quiz’ treatment – in only one respect: the same electronic baskets

that were earned in the Quiz treatment are simply assigned randomly, leading

to the same subcoalitional worths. These two treatments are thus directly

comparable. By eliminating effort entirely, the No-Quiz treatment eliminates

any uncertainty about the extent of meritocracy. As we anticipated, our qual-

itative results regarding the axioms and the usefulness of the ESS model are

replicated to a large degree by the No-Quiz treatment. Perhaps surprisingly,

the quantitative results are remarkably similar too. Theoretically, it could

mean that estimated parameters are context independent. Alternatively, not

knowing how challenging the quiz was, nor the precise mapping between earned

fictitious objects and coalition worths, it could be that many Decision Makers

in the quiz treatment viewed characteristic functions as if they were randomly

assigned. Still, this would show that many Decision Makers take coalition

worths into account independently of their origin.

To further test whether our qualitative results are portable across a wide

variety of contexts, we designed a third, more radically different treatment.

Both the Quiz and No-Quiz treatments generate coalition worths somewhat

abstractly through baskets combinations of fictitious objects. Would we still

find that the ESS model, and its underlying axioms, help organize choices if

coalition worths arise in a context more relatable to real-life situations? And

if so, would the pull towards the Shapley value be quantitatively different? To
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study these questions, we turn to the long tradition of vignettes in a strand of

the experimental literature on distributive justice: see, for instance, the classic

papers of Yaari and Bar-Hillel (1984), Kahneman, Knetsch and Thaler (1986),

Levine (1993), or many other papers reviewed in Konow (2003)’s survey, which

also discusses benefits and drawbacks of the method.27 A vignette provides

subjects with contextual information on a realistic problem, and asks them to

make a decision for that circumstance. They are intended to help participants

understand, relate and think through a problem. In our setting, the hope is

to make the characteristic function come to life in a practical problem.

The vignette we test is based on the musicians in the first paragraph of

the introduction. We use the ‘same’ characteristic functions as in the first

two treatments, but multiply all coalition worths by 10 for the vignette to be

plausible. In our ‘Vignettes’ treatment, all subjects are Decision Makers (and

paid per decision, as before). The three musicians in a vignette are the hypo-

thetical Recipients. Unlike our other treatments, Decision Makers’ choices are

never implemented. Since their choice matters to no one but themselves, and

they are paid a fixed amount regardless of the allocation selected, some might

expect Decision Makers to avoid thinking costs: for instance, simply allocating

the entire amount to one musician, or always splitting equally. However, it is

well documented that subjects take vignettes seriously (Konow, 2003).

Indeed, we again find that subjects take coalition worths into account, and

that cooperative game theory provides a useful way to organize the data. We

find extremely similar qualitative results, but uncover quantitative differences,

with a greater pull away from equal split: the estimated weight on the Shapley

value in the Vignettes treatment is about 50% larger than in the Quiz and No-

Quiz treatments. This is reflected in a comparison across treatments of the

CDFs of money allocated to each Recipient. For each characteristic function

and Recipient whose Shapley value is greater than (smaller than) the amount

they would receive from equal split, the CDF of money allocated to them in the

27This treatment thus contributes to that literature, which also employs an impartial
observer approach (often using the terminology ‘benevolent dictator’). Unlike our work, this
experimental literature does not consider sub-coalition worths, and thus overlooks potential
complementary or substitutability of agents.
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Vignettes treatment nearly first-order stochastically dominates (is dominated

by) the CDFs from the other treatments. Most of these rankings are highly

statistically significant. Thus the fact that behavior was overall similar in

the Quiz and No-quiz treatments suggests that coalition worths were mostly

interpreted as determined by luck in our Quiz treatment.

Our three treatments provide robust evidence that coalition worths do mat-

ter in settings where agents can vary in how substitutable or complementary

they are, and that the ESS model and its underlying axioms are important

tools for organizing the data. The Vignettes treatment provides some evidence

that parameter estimates may vary across contexts. This opens directions for

future research. First, one may want to better understand how parameter

estimates might vary across contexts, by drawing connections to theories of

desert in the distributive-justice literature. For instance, Buchanan (1986)

contrasts luck, choice, effort, and birth as distinct categories that impact one’s

claim to wealth; see also Konow (2003, Section 4.2). Second, one could test

and calibrate the ESS model with different subject pools. Interestingly, while

Croson and Gneezy (2009)’s survey highlights robust gender differences in risk,

other-regarding and competitive preferences, we find no statistically significant

differences in the parameter estimates across men and women. Exploring this

further, and testing for cultural differences, would be of interest.
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